

REALLY!

REALLY!

REALLY!

Source: F.R.I.E.N.D.S , www.makeameme.com

FACULTY OF ENGINEERING

Advances in Representation Learning

"representing NN in a fancy way!"

Arijit Ghosh Seminar Advanced Deep Learning, Friedrich-Alexander-Universität Erlangen-Nürnberg January 25, 2023

Kokkinos, lasonas. "Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory." CVPR, 2017.

Kokkinos, lasonas. "Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory." CVPR, 2017.

Kokkinos, lasonas. "Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory." CVPR, 2017.

Kokkinos, lasonas. "Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory." CVPR, 2017.

Carter, Brandon, et al. "Overinterpretation reveals image classification model pathologies." NeurIPS, 2021.

Carter, Brandon, et al. "Overinterpretation reveals image classification model pathologies." NeurIPS, 2021.

ResNet, AlexNet, VGG Accuracy \geq 92%

Carter, Brandon, et al. "Overinterpretation reveals image classification model pathologies." NeurIPS, 2021.

Yuille, Alan L., and Chenxi Liu. "Deep nets: What have they ever done for vision?." International Journal of Computer Vision 129.3 (2021)

→ Problem of Generalization.

→ Problem of Generalization.

ImageNet Image Recognition

→ Problem of Generalization.

→ Problem of Generalization.

→ Problem of Generalization.

Common DL Models

Common DL Models

Common DL Models

Representation Learning

Common DL Models

Representation Learning

Specific Outputs?

Source: https://forum.game-labs.net/gallery/image/2682-meh-meme/

Common DL Models

Representation Learning

MY PRECIOUS...

FEATURES

Source: Lord of the Rings

Common DL Models

Representation Learning

MY PRECIOUS...

FEATURES

Source: Lord of the Rings

Representation Learning with Deep Learning - CONQUER!

Common DL Models

Representation Learning

MY PRECIOUS...

FEATURES

Source: Lord of the Rings

•••	www.google.com/no-reason-meanings	000
	Dictionary	
	Definitions from Oxford Languages - Learn more	
	Search for a word Q	
	representation	
	/_reprizen'teij(e)n/	
	See definitions in:	
	All Psychology Philosophy	
	noun	
	 the action of speaking or acting on behalf of someone or the state of being so represented. "you may qualify for free legal representation" 	
	 the description or portrayal of someone or something in a particular way. "the representation of women in newspapers" 	
	Similar: portrayal depiction delineation presentation rendering v	
	Feedback	
	Translations and more definitions v	

Source: www.google.com

Motivating Representation Learning 101 (ctd...)

Source: (Van Gogh, The Starry Night)

Visualization of First Layer weights

Gidaris, Spyros, Praveer Singh, and Nikos Komodakis. "Unsupervised representation learning by predicting image rotations." arXiv preprint, 2018.

https://cs231n.github.io/convolutional-networks/

Visualization of First Layer weights

AlexNet on CIFAR-10 Object Recognition Task

Gidaris, Spyros, Praveer Singh, and Nikos Komodakis. "Unsupervised representation learning by predicting image rotations." arXiv preprint, 2018.

https://cs231n.github.io/convolutional-networks/

Visualization of First Layer weights

AlexNet on CIFAR-10 Object Recognition Task

AlexNet on Imagenet Object Recognition Task

Gidaris, Spyros, Praveer Singh, and Nikos Komodakis. "Unsupervised representation learning by predicting image rotations." arXiv preprint, 2018.

https://cs231n.github.io/convolutional-networks/

Outline

Source: F.R.I.E.N.D.S

→ Learning Data Manifolds.

→ Learning Data Manifolds.

→ Learning Data Manifolds.

→ Clustering with Neural Networks?

Deep Clustering 101

Deep Clustering 101

→ Highly tangled.

Deep Clustering 102

Zhang, Dejiao, et al. "Deep unsupervised clustering using mixture of autoencoders." arXiv preprint, 2017.

Deep Clustering 102

→ Disentangled.

Zhang, Dejiao, et al. "Deep unsupervised clustering using mixture of autoencoders." arXiv preprint, 2017.

Deep Clustering 102 : The Problem!

Deep Clustering 102 : I hate "K"

Deep Clustering 103 : Intoducing DeepDPM

Deep Clustering 103 : Intoducing DeepDPM

→ No dependency on K.

Deep Clustering 103 : Intoducing DeepDPM

• State-of-the-art clustering results.

- State-of-the-art clustering results.
- Comparable to Supervised Nets?

- State-of-the-art clustering results.
- Comparable to Supervised Nets?

NO

• Bring Your Own Labels.

- Bring Your Own Labels.
- Proxy-Tasks.

- Bring Your Own Labels.
- Proxy-Tasks.

WATCHING BREAKING BAD

BEFORE CHEMISTRY EXAM

Source: Breaking Bad

• Labels based on Image Rotation

- Labels based on Image Rotation .
- 4 labels.

- Labels based on Image Rotation .
- 4 labels.

Input Image

Input Image

Random Cropped and Shuffled as a Puzzle

Input Image

Random Cropped and Shuffled as a Puzzle

Solved Puzzle

Proxy Task 102 : Puzzle Solving with Context Free Network

Proxy Task 103 : Colorization

Proxy Task 103 : Colorization

→ Grayscale to Color Conversion.

Proxy Task 103 : Colorization

→ Grayscale to Color Conversion.

Input Image

Output Image

Proxy Task 103 : Colorization with FCN

Can we combine them?

Source: https://www.bradleyscout.com/voice/rumored-three-spider-mans-in-one/

Proxy Task 104: Mixture of all

Kim, Dahun, Donghyeon Cho, Donggeun Yoo, and In So Kweon. "Learning image representations by completing damaged jigsaw puzzles." WACV, 2018.

He, Kaiming, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. "Masked autoencoders are scalable vision learners." CVPR, 2022.

He, Kaiming, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. "Masked autoencoders are scalable vision learners." CVPR, 2022.

He, Kaiming, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. "Masked autoencoders are scalable vision learners." CVPR, 2022.

He, Kaiming, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. "Masked autoencoders are scalable vision learners." CVPR, 2022.

He, Kaiming, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. "Masked autoencoders are scalable vision learners." CVPR, 2022.

A bit is better than none :D

• Small portion Labeled.

- Small portion Labeled.
- How to take advantage?

- Small portion Labeled.
- How to take advantage?

I AM LEARNING

Source: https://openai.com/dall-e-2/

Consistency Regularization

Tarvainen, Antti, and Harri Valpola. "Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results." NeurIPS , 2017.

y2

Consistency Regularization Classifier Image, x2 Image, x1 y1

Classifier

Tarvainen, Antti, and Harri Valpola. "Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results." NeurIPS , 2017.

rarvanien, Anui, and harn valpola. Wean leachers are belier role models: Weight-averaged consistency targets improve semi-supervised dee results." NeurIPS , 2017.

Pseudo Labels

Lee, Dong-Hyun. "Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks." Workshop on challenges in representation learning, ICML , 2013.

image_1

Label = [0 , 1]

Label = [0 , 1]

Label = [1, 0]

image_1

Label = [0 , 1]

image_2

Label = [1, 0]

 $\begin{array}{l} \textbf{Mixed_Image} = \lambda \ ^* \ image_1 \ + \ (1 \ - \ \lambda \) \ ^* \\ image_2 \end{array}$

 λ = 0.4 , Label = [0.6 , 0.4]

Berthelot, David, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A. Raffel. "Mixmatch: A holistic approach to semi-supervised learning." NeurIPS , 2019).

Berthelot, David, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A. Raffel. "Mixmatch: A holistic approach to semi-supervised learning." NeurIPS , 2019).

Berthelot, David, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A. Raffel. "Mixmatch: A holistic approach to semi-supervised learning." NeurIPS , 2019).

Berthelot, David, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A. Raffel. "Mixmatch: A holistic approach to semi-supervised learning." NeurIPS , 2019).

The thing is...

Source: https://makeameme.org/meme/you-were-supposed-882fc96e1a

Fixed by FixMatch

Sohn, Kihyuk, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A. Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. "Fixmatch: Simplifying semi-supervised learning with consistency and confidence." NeurIPS , 2020.

Fixed by FixMatch

Labelled Data Phase

Sohn, Kihyuk, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A. Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. "Fixmatch: Simplifying semi-supervised learning with consistency and confidence." NeurIPS , 2020.

Fixed by FixMatch

Labelled Data Phase

Sohn, Kihyuk, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A. Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. "Fixmatch: Simplifying semi-supervised learning with consistency and confidence." NeurIPS , 2020.

But....

But....

→ Explicit need of Features in Supervised Learning.

But....

→ Explicit need of Features in Supervised Learning.

METRIC LEARNING

Hadsell, Raia, Sumit Chopra, and Yann LeCun. "Dimensionality reduction by learning an invariant mapping." CVPR 2006

→ Learn an embedding/ feature vector.

Hadsell, Raia, Sumit Chopra, and Yann LeCun. "Dimensionality reduction by learning an invariant mapping." CVPR 2006

→ Learn an embedding/ feature vector.

Hadsell, Raia, Sumit Chopra, and Yann LeCun. "Dimensionality reduction by learning an invariant mapping." CVPR 2006

→ Learn an embedding/ feature vector.

$$L_{contrastive} = \mathbb{1}_{y_1 = y_2} D^2 f_{\theta}(x_1, x_2) + \mathbb{1}_{y_1 \neq y_2} max(0, \alpha - D^2 f_{\theta}(x_1, x_2))$$

Hadsell, Raia, Sumit Chopra, and Yann LeCun. "Dimensionality reduction by learning an invariant mapping." CVPR 2006

Triplet Loss

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." CVPR, 2015.

Triplet Loss Negative Anchor LEARNING Negative Anchor Positive Positive

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." CVPR, 2015.

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." CVPR, 2015.

Triplet Loss... The Problems

Source: https://hav4ik.github.io/articles/deep-metric-learning-survey

Triplet Loss... The Problems

• Expansion Problem.

Source: https://hav4ik.github.io/articles/deep-metric-learning-survey

Triplet Loss... The Problems

- Expansion Problem.
- Sampling Problem.

Source: https://hav4ik.github.io/articles/deep-metric-learning-survey

Introducing... SphereFace

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

• i < j → Class i.

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

- i < j → Class i.
- · Makes last layer weights as class centers.

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

Don't believe in what you see...

Musgrave, Kevin, Serge Belongie, and Ser-Nam Lim. "A metric learning reality check." ECCV, 2020.

Don't believe in what you see...

Improvements over Contrastive Loss

Musgrave, Kevin, Serge Belongie, and Ser-Nam Lim. "A metric learning reality check." ECCV, 2020.

Don't believe in what you see...

Improvements over Contrastive Loss

Improvements over Triplet Loss

Musgrave, Kevin, Serge Belongie, and Ser-Nam Lim. "A metric learning reality check." ECCV, 2020.

Hybrid Methods 101... SimCLR

→ Self-Supervised + Contrastive Learning

Chen, Ting, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. "A simple framework for contrastive learning of visual representations." PMLR, 2020.

Hybrid Methods 102... SimSiam

→ Self-Supervised + Contrastive Learning

Chen, Xinlei, and Kaiming He. "Exploring simple siamese representation learning." CVPR, 2021.

Koppula, Skanda, Yazhe Li, Evan Shelhamer, Andrew Jaegle, Nikhil Parthasarathy, Relja Arandjelovic, João Carreira, and Olivier Hénaff. "Where should i spend my flops? efficiency evaluations of visual pre-training methods." arXiv preprint arXiv:2209.15589 (2022).

• Representation Learning methods- Amazing!

Koppula, Skanda, Yazhe Li, Evan Shelhamer, Andrew Jaegle, Nikhil Parthasarathy, Relja Arandjelovic, João Carreira, and Olivier Hénaff. "Where should i spend my flops? efficiency evaluations of visual pre-training methods." arXiv preprint arXiv:2209.15589 (2022).

- Representation Learning methods- Amazing!
- Pre-Training.

Koppula, Skanda, Yazhe Li, Evan Shelhamer, Andrew Jaegle, Nikhil Parthasarathy, Relja Arandjelovic, João Carreira, and Olivier Hénaff. "Where should i spend my flops? efficiency evaluations of visual pre-training methods." arXiv preprint arXiv:2209.15589 (2022).

- Representation Learning methods- Amazing!
- Pre-Training.
- CO₂ foot print.

Koppula, Skanda, Yazhe Li, Evan Shelhamer, Andrew Jaegle, Nikhil Parthasarathy, Relja Arandjelovic, João Carreira, and Olivier Hénaff. "Where should i spend my flops? efficiency evaluations of visual pre-training methods." arXiv preprint arXiv:2209.15589 (2022).

- Representation Learning methods- Amazing!
- Pre-Training.
- CO₂ foot print.
- Better Dataset Curation.

Koppula, Skanda, Yazhe Li, Evan Shelhamer, Andrew Jaegle, Nikhil Parthasarathy, Relja Arandjelovic, João Carreira, and Olivier Hénaff. "Where should i spend my flops? efficiency evaluations of visual pre-training methods." arXiv preprint arXiv:2209.15589 (2022).

Thank You!!

Questions? Questions?

FACULTY OF ENGINEERING

Appendix-A

Each datapoint shape : (4 , C , H , W)

Intial Setup

Each datapoint shape : (4, C, H, W)

Implementing the __getitem__() method

Each datapoint shape : (4, C, H, W)

Each datapoint shape : (4, C, H, W) Implementing the augmentation routine.

Each datapoint shape : (4 , C , H , W) Implementing the ___**len__()** method

Each datapoint shape : (4 , C , H , W) Fixing Batches with custom collate

•••

```
1 def custom_collate(batch):
2 batch_imgs, batch_labels = default_collate(batch)
3 batch_imgs = batch_imgs.reshape(
4 batch_imgs.shape[0] * batch_imgs.shape[1],
5 batch_imgs.shape[2],
6 batch_imgs.shape[3],
7 batch_imgs.shape[4],
8 )
9 return batch_imgs, batch_labels
```


FACULTY OF ENGINEERING

Appendix-B

Intial Setup

Implementing the __getitem__() method

```
• • •
```


Implementing the ___Ien__() method

FACULTY OF ENGINEERING

Appendix-C

Intial Setup

Implementing the __getitem_() method

Implementing the ___Ien__() method

FACULTY OF ENGINEERING

Appendix-D

SimCLR Data-prep Code Walkthrough

SimCLR Data-prep Code Walkthrough

Intial Setup

SimCLR Data-prep Code Walkthrough

Implementing the __getitem_() method

SimCLR Data-prep Code Walkthrough

Implementing the ___Ien__() method

FACULTY OF ENGINEERING

Appendix-E

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

$$\hat{y} = \frac{\exp\{z\}}{\sum_{k=1}^{K} \exp\{z_k\}}$$

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

$$L = -\frac{1}{N} \sum_{i=1}^{N} y_i * \log \frac{\exp\{z_i\}}{\sum_{k=1}^{K} \exp\{z_{i,k}\}}$$

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

$$L = -\frac{1}{N} \sum_{i=1}^{N} y_i * \log \frac{\exp\{W_i^T x_i\}}{\sum_{k=1}^{K} \exp\{W_{i,k}^T x_i\}}$$

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp\{W_{y_i}^T x_i\}}{\sum_{k=1}^{K} \exp\{W_{i,k}^T x_i\}}$$

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp\{\left\|W_{y_i}\right\| \|x_i\| \cos(\theta)\}}{\sum_{k=1}^{K} \exp\{\left\|W_{i,k}\right\| \|x_i\| \cos(\theta)\}}$$

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp\{\|x_i\|\cos(\theta)\}}{\sum_{k=1}^{K} \exp\{\|x_i\|\cos(\theta)\}}$$

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp\{\|x_i\|\psi(\mu\theta)\}}{\sum_{k=1}^{K} \exp\{\|x_i\|\psi(\mu\theta)\}}$$

Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. "Sphereface: Deep hypersphere embedding for face recognition.", CVPR 2017.